

Requirements Specification
11/20/2017

Sponsor: Harlan Mitchell, Sys. Tech. Manager
Honeywell Aerotech

Mentor: Austin Sanders

Project Members:
Josh Baker
Rex Rogers

Emilio Sifuentes
Summer Stapleton

Accepted as baseline requirements for the project:

For the client: __________________ (Signature) ________________(Printed Name) ___________(Date)

For the team: __________________ (Signature) ________________(Printed Name) ___________(Date)

Table of Contents

1. Introduction 1

2. Problem Statement 2

3. Solution Vision 3

4. Project Requirements 4
4.1 BTU Application 5
4.2 Web Interface 5
4.3 Login System 6
4.4 Central Database 6
4.5 Networking 7
4.6 Non-Functional Requirements 8

Potential Risks 11

Project Plan 13

Conclusion 14

1

1. Introduction
With roughly 5,000 flights in the United States airspace at any given time, the importance of
keeping these planes properly functioning cannot be understated. With the potential for
extensive damage of property and horrendous loss of life, there have been a number of
safeguards put into effect. One such safeguard would be that of the Engine Control Units
(ECUs), which can be likened to the brains of a plane’s engine, able to read input from plane
sensors and supply output as well. The Federal Aviation Administration (FAA) maintains high
standards when it comes to the functioning of these units and requires extensive testing and
certification of the ECU model before it may be put into operation. The client of this capstone
project, Honeywell Aerospace, is a manufacturer of these ECUs and needs to abide by the
regulations set forth by the FAA, and so needs an efficient means of running rigorous testing on
them.

The project under discussion within this document is the Next Generation BTU (Bench Test
Utilities) Proof of Concept, and the sponsor is Harlan Mitchell, a Systems Tech Manager for
Honeywell Aerospace. This project consists of creating a web-based application and a
centralized database that offers end-users easier interaction with the ECU testing system
already in place at Honeywell Aerospace, allowing for the creation, running, storage and viewing
of tests and their results from any machine with a connection to the network and a proper
browser. The issue with the current system, despite its working state, is that it is outdated and
tedious to use. The front end is running on outdated Windows XP operating systems, and the
back end consists of separate databases running on Microsoft Access 2003. Testers and
engineers must access this system from designated machines that are physically located in a
particular room, and may only access certain test/results from certain machines.

In this document, the requirements of the solution will be carefully laid-out to allow for proper
planning and effective implementation.

This is a Requirements Engineering Capstone Project for The College of Engineering at
Northern Arizona University for the 2017-2018 academic year. The Capstone Team name is
Horizon Analytics and consists of: Josh Baker, Rex Rogers, Emilio Sifuentes and Summer
Stapleton.

2

2. Problem Statement
When testing a new engine control unit (ECU), several steps are performed in a specific order in
order to ensure proper testing of the ECU. When a new design is submitted, an engineer must
install the ECU at the simulator then moves to the bench test utility(BTU) to build the tests to be
executed. These tests are created by generating python scripts which are then sent to the
simulator which adjusts parameters read by the ECU. The results are recorded as a pass or fail
based on how the ECU reacts to these changes and output to the engineer in an html format.

With the current workflow, once an engineer installs the ECU at the simulator and begins
building the tests, that system is no longer available for use by other engineers until testing is
complete. In addition, the current bench test utility utilizes legacy software which forces the
current system to be operated offline for security reasons.

● Bench test utility can only be used by a single engineer at a time
● Windows XP operating system and Microsoft Access 2003 database place the system at

risk
● Engineers must be physically present at the simulator to build the tests
● Engineers are not able to build tests in advance thus slowing the work flow

3. Solution Vision
To solve the problem, a web-based Bench Test Utility is being developed. It will allow
engineers to connect to it via the internet, allowing them to write and run their tests from their
usual workstations. Making the new BTU web-based will remove legacy dependencies that the
previous version required by allowing any web-browser to connect instead of requiring old
operating systems.

3

From the web portal users will be able to:

● Write new tests
● Save tests to a database
● Search and filter previously written tests from the database
● Retrieve previously written tests from the database
● View the tests queued and being run on each simulator
● Send a test to a simulator to be run
● View the results of any tests previously run

Additionally, the system will:

● Generate python scripts from the written tests to be executed on the simulator
● Send the results of the tests from the simulator to be stored on the database

This design keeps all the functionality of the previous iteration of the Bench Test Utility, while
saving valuable Engineer time by removing the need for them to wait for a BTU to be available
and by allowing them to access the BTU without getting up. Further, it allows them to
completely remove the current computers running XP that are hooked up to the simulators
currently.

This solution does require a small change on behalf of the client where they will need to add a
network connection to their simulators since they are currently offline. The upside to this is that it
allows written tests, and the results of any tests to be directly uploaded onto a central database
to be checked from anywhere, instead of having tests and results be local to a given BTU.

4. Project Requirements
The requirements outlined in this section will serve as a record of expectations from Horizon
Analytics. The exact means of attaining these requirements are subject to alterations as the
team progresses through their execution.

4

4.1 BTU Application

4.1.1 Description
The BTU application is the backend of the web interface that handles the work of the
website. It has all the functionality of the current BTU system that exists. It needs to
handle the writing, saving, retrieving, and running of tests and test results.

4.1.2 Functional Requirements

Test Functions - A list of functions that a test is capable of running will exist.

Function Parameters - Possible values for each function that exists will be defined.

Function Scripts - Each function will have a python script associated with it.

Database Communication - The application will be able to communicate with the
database.

Database Query - The application will be able to send SQL queries to the database
and receive results of those queries.

Database Writing - The application will be able to write new entries into the
databases tables using SQL.

Python Script Templating - The application will be able to produce a python script file
that contains the function scripts put together in an order based on a written test.

4.2 Web Interface

4.2.1 Description

The web interface will allow engineers to access the testing utility from their own
desk. When accessing the web interface, the engineers will have the option to
search for a pre-existing test, review test results, create a new test, or run a test.

4.2.2 Functional Requirements

Browser - The web interface will be designed and tested for use with with the Firefox
browser.

5

Dynamic Information Display - Content on the interface needs to be able to
dynamically update based on user actions and database updates.

Test Search - Tests may be searched by Test Creator, Test ID, Product Type, or
Name.

Test Results - Results will be viewable directly from the web interface.

Write Tests - Users will be able to create tests by selecting test parameters provided
on the web interface.

Save Tests - Users will be able to provide a name for, and save tests created within
the web interface.

Run Tests - The user will be able to select a simulator to run the test on, and then
send the test to that simulator for execution.

4.3 Login System

4.3.1 Description
The login system will allow users to have a unique ID with which they will use to
access the web interface. The login system will serve to protect the testing software
and database from unauthorized access.

4.2.2 Functional Requirements

Store User - The login system will be able to store user’s login information in a
database.

Security - The login system will prevent unauthorized access to the testing software
and database.

6

4.4 Central Database

4.4.1 Description
The Central Database will handle the raw data created by the Engineers via the tests
and the test results. This database will be web based.

4.4.2 Functional Requirements

Parameter Storage - Test creation parameters will be stored within the database.

Test Result Storage - Test results will be stored within the database

Test Storage - Tests will be stored within the database

Test Access (web interface) - The web based application will be able to access the
database for its functional purposes.

Test Access (simulator side) - The simulator side of the implementation will be able
to receive information from the database for its functional purposes.

Test Results Access (web interface) - The web interface will be able to access the
test results within the database for its functional purposes.

Format Tests - organize tests by a standard set by the information available within
the parameters.

Format Test Results - organize test results by the information available in the results.

Find Tests - Find tests that meet search parameters.

Find Test Results - Find test results that meet search parameters

Test Parameters Tables - Database tables holding the test parameters..

Results Tables - Database tables holding the test results.

7

4.5 Networking

4.5.1 Description
Networking Protocols are required to have communication between each of the
major components of this project. This project will deploy the use of HTTP
networking.

4.5.2 Functional Requirements

Test Parameter Transference - The networking protocols will allow the transfer of
test parameters from web application to database.

Test Parameter Transference - The networking protocols will allow the transfer of
test parameters from database to Simulator side.

Test Result Transference - The networking protocols will allow the transfer of test
results from simulator side to the database.

4.6 Non-Functional Requirements

The non-functional requirements for the Next Generation BTU Proof of concept will be
defined as follows:

4.6.1 Performance

Since the Bench Test Utilities already exists in a different form, it may be used as a
means to measure expected performances of the solution as far as computational
speeds are concerned. It has been determined that the speeds of the following
computations may not exceed 150 percent of the computational times of the current
system:

● Data retrieval from the database
● Loading of tests/test results for viewing in the BTU application
● Data transfer from application to simulator, and back again

These values will be obtained by taking the average computational runtime of 10
runs for each on both systems.

8

Given the ease of access of the proposed solution, and therefore less labor spent in
the creation and the running of these tests, there is confidence that overall
performance will still increase so long as computations fall within this range.

This may be tested by simply comparing the two systems side-by-side for these
processes, as both systems will have these processes in place.

4.6.2 Effectiveness

The sponsor has expressed the importance of an effective design for the solution,
with this factor being a driving force behind seeking an improved system. Allowing a
user to access the entire database from a single machine of their choice will logically
increase the effectiveness of the workflow as users will no longer need to move to
another room and search through many unconnected databases.

Of course this requirement will prove itself difficult to quantifiably measure, with the
main source of measurement likely coming in the form of user feedback as well as
department reviews of labor and performance.

Further discussions with the sponsor may be needed to discern reasonable and
quantifiable expectations.

4.6.3 Usability

The solution must be intuitive and easy to learn in order to increase its effectiveness.
It is the goal for this solution to allow for certain standards to be met with regard to
the number of iterations of a particular workflow in a given space of time before a
user has sufficiently learned said workflow.

The iterations for the different workflows are as follows:

● Creating tests: Users of the current BTU should be able to perform the

unaided creation of a test on the new system after having performed at least
ten test creations in a day, with at least twenty test creations within a week.

● Running tests: Users of the current BTU should be able to perform the
unaided running of a test on the new system after having performed at least
three test runs per day for five consecutive days.

● Viewing results: Users of the current BTU should be able to perform the
unaided viewing of test results on the new system after having performed at
least three test viewings per day for five consecutive days.

With working knowledge of how the current system functions among the current
labor force, these goals should be easily realized while creating an accountability
measurement of the usability of the solution.

9

4.6.4 Efficiency
As the application will need to handle the transfer of files to and from a number of
different simulators, the database and end-user machines, with multiple users being
able to access the system at any given time, it may encounter many transfers
happening in parallel, it will need to accommodate this traffic without causing
excessive degradation of speeds.

(Acceptable speed degradation was addressed in the Performance section above.)

4.6.5 Robustness

Given that the testing of these ECU units needs to be virtually error-free, the
application must be robust enough to account for user error and improper database
access as well any extraneous output from the simulator.

As proper certification through the FAA is required before these units may be put on
the market, it is no surprise that this concern has been reiterated by the sponsor on a
number of occasions, and so will need to have special care taken in its regard.

Though many measures will be taken to ensure the robustness of the solution, a final
means of measuring this robustness still needs to be discussed with the sponsor as
well as acceptable standards that must be maintained with regard to it.

One idea may be to run the application through a suite of tests with random errors
that the application must be able to correctly identify. (Maybe not the exact values as
these could be random, but just the very fact that an error has occurred and
therefore the test results should not be used.) The random nature of the errors would
prevent the development of specific solutions, forcing a general approach to be
created that will catch a wider range of errors.

4.6.6 Maintainability

As the solution is the implementation of a simple prototype, maintainability may
prove itself more important than in the current system or the full implementation of
the system being prototyped. This may help to contribute to the continuous
development and improvement of the proposed solution.

Discussions with the sponsor needs to be had that will clearly define a standard
means of approaching and measuring the successful implementation of this
requirement.

4.6.7 Documented

In order to ensure that the solution will be of use to future implementations of the
BTU, documentation will be kept with explicit explanations of workflows and code.

10

Workflows will be carefully documented to explain the proper functioning of the
application as well as the purpose to the different design choices, at the developer
team’s discretion.

Every directory of the source code of the application will include a README file
detailing the purpose/organization of the files/directories therein. Inter-code
documentation shall be included for:

● Functions, including purpose and parameters
● Variables of the different classes, when declared
● Explanation of complex calculations/algorithms, at the development team’s

discretion

The full solution shall also include user documentation to aide in the proper use and
understanding of the application and its processes as well as how to handle any
unexpected behaviour in a safe manner. (As an example, when the simulator returns
obviously erroneous output.)

Ensuring proper and full documentation as expected by the client, ongoing
communications with the sponsor may need to be had.

Potential Risks
At the highest level, incorrectly stored test parameters is the worst case scenario of the risks
associated with this project.. Plane engine testing would be compromised in the case that an
error would go undetected by the people performing the testing. This scenario would end in an
improperly tested Engine Control Unit (ECU) test. In this case, these tests may indicate false
positives and false negatives for the test reports. This is the worst case scenario in all of this
project’s involvement. Improperly tested control units would be dangerous if they make it past
the testing stages. This would result in the loss of client trust, the endangering of aircraft
passengers, hindering of the testing protocol, and costing time and money. If the testing
protocols are secure enough, there is a system to back up lost data, and the database’s tests
are updated regularly, this should only be an inconvenience.

Negative User Experience is another risk that would hinder the effectiveness of the current
solution goal. An unintuitive design would leave the users of the BTU confused and unable to
work as efficiently and effectively as they currently do on the system in place. If the users do not

11

find the design easy to use in place of the current system, Honeywell would lose time in testing
the ECUs and the money associated with that time investment.

User error is also on the list of user related risks. As humans are error prone, the project must
account for the possibility of incorrectly created testing parameters as well. This kind of error
would hinder the efficiency of the testing program and lose money relevant to that time wasted.
Preventing this would involve a dynamic web application design preventing incorrect test
parameter creation and storing.

With the handling of information sent back and forth between the application and the engineers
working with it, the test configurations or the test reports within the database are in the most
vulnerable position towards harmful intent. In the case that someone plans on sabotaging the
information within the database, they could erase or manipulate files within the database.
Fortunately, they would not be able to interact with the ECU or the simulator on the back end
besides the faulty reports and tests that would occur in the case of an injection attack on the
database. This means that if the previous methods of upkeep from insuring against malfunction
and applying those to database system upkeep, this should be only a slight inconvenience as
long as any issues are tracked carefully. It is possible that using SQL injection techniques would
also be in attempt to steal information. However, the client this project is for has expressed that
security is not of the utmost concern as of right now..

During the transference of data, incorrect transfers are possible. This would result in odd test
results in the most likely case. Data from the test configuration being scrambled would have odd
effects on the ECU handling of simulator tests. Most likely, this would result in faulty testing that
would be harder to detect. If allowed to continue, at a rate of which that could influence final test
results in the long run for ECUs, Honeywell would lose time and money in this case. However,
covering the potential of this risk with proper upkeep on results and reading the reports would
keep this issue from being out of control as a whole. Identifying bugs as configurations are
developed would also handle this. The likelihood of issues in this case would be left up to the
robustness of the code handling data transfer protocols and networking protocols, since data
transference occurs on the front and back end of the project. Both AngularJS and Django
frameworks have available security functions to the frameworks themselves. The networking
protocol, HTTPS, is already made to be secure. Having these security measures in place will
keep the data being sent back and forth safe for the purposes of this project.

12

As for the implementation of the project itself, this web-based application of the Bench Test
Utilities should be an upgrade for the engineers. This will allow the project to have a solid
foundation for its use. As long as the project does not stray away from its design, there should
be no reason that an engineer would not want to use this application as opposed to a version
that would require moving around to do work that can be done at personal computers with this
application. As for the future of the project, updates will most likely take place, but the idea of
this project is meant to make the ECU testing process more fluent.

Project Plan
Execution of this solution will involve a number of smaller tasks that will build on one another.
Fortunately, this solution lends itself well to successive development.

The creation of a network model demo is already in progress. This demo will be proof of proper
communication between the application and the simulator.

Once this has been established, work on the application itself may begin. As every facet of the
solution is tied together by this code, and given that this is the biggest and most-stressed
requirement set-forth by the client, it makes sense that work would begin here. In order to have
something tangible to be able to present to the client sooner, work will start on the front end first.

Once both ends of the application are communicating properly, focus may be directed towards
database development. With better understanding of the options needed for the users of the
BTU will come a better understanding of how to structure the database to better organize the
information for easy and quick retrieval.

With a basic database established, hard-coded values that were used to test the client side and
server side communication within the application may then be replaced with database queries to
ensure that communication between the application and the database is functioning properly.

Next, communication between the application and the BTU simulator will need to be
established. The backend framework for the application should be able to handle this without
issue, however if problems arise, a simple http protocol should be simple to put together to allow
for the exchange of files with the simulator. Sending a simple test script and confirming that

13

expected output is received would be a simple means of testing this functionality. This may be a
test script that is already in use with the BTU to ensure expected results.

Once the basic structure of the solution is in place, the development of the automated scripting
portion of the solution can be implemented. This will be added to the server-side code of the
application and may be tested similar to how the communication link between the application
and the simulator was.

Though many of these steps may be conducted simultaneously, there will be a number of
deadlines in place to ensure a smooth flow from one requirement to the next.

Conclusion
Plane safety starts before the plane ever leaves the ground. To ensure this safety, a plane’s
components require extensive testing by manufacturers before ever entering use. The goal is to
create a more efficient and modern testing system for Honeywell, addressing the inefficiency
that Honeywell has outlined with the current system of use of the Bench Test Utilities in place
To accomplish this, we are developing a web-based Bench Test Utilities that utilizes a central
database. This would allow the current functionalities that exist within the Bench Test Utilities to
be effectively recreated on the web based application. This requirements specification
document is meant to outline those requirements for the client and lay down a foundation of
progress to complete for the project ahead. As tech demos are put together proving that the
research up to this point is possible. We are confident that we can provide a web-based
application that honeywell will find much more convenient than the system they are currently
using.

14

